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Located in the northwest of Laocai province, Batxat district has been 
frequently affected by natural disasters, including landslides and debris 
flows. Therefore, landslide hazard assessment (LHA) has been a 
significant task for planning, economic development, and minimizing 
human and property damage. For this purpose, landslide hazard maps 
were established in this study using the Analytic Hierarchy Process (AHP) 
and the combined Analytic Hierarchy Process - Frequency Ratio 
(AHP&FR) models. Ten landslide-related factors were selected, including 
elevation, slope, distance to road, distance to drainage, land use and land 
cover (LULC), average monthly rainfall, lithology, aspect, distance to fault, 
and relative relief. Afterwards, the weighted value of landslide-related 
factors and the landslide susceptibility index (LSI) were determined using 
the Analytic Hierarchy Process. The Frequency Ratio method was used to 
calculate the weighted value of factor classes. Two landslide hazard maps 
were established, and the study area was divided into five hazard zones: 
very low, low, moderate, high, and very high. The performance of the 
models was determined using the area under the curve (AUC) of the 
receiver operating characteristic (ROC), the seed cell area index (SCAI), 
and the precision of the predicted results (P). The AUC values for the 
success rate of these models were 0.72 and 0.75, and for the prediction 
rate were 0.67 and 0.70, respectively. The evaluation results of the models 
showed that, although both the AHP and combined AHP&FR models have 
good performance for landslide hazard mapping, the AHP&FR model 
produces more accurate outcomes than the AHP model.  
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1. Introduction 

Landslide is one of the most devastating 

natural disasters that occurs worldwide, causing 

significant damage to people and property 

(Althuwaynee et al., 2012; Mandal & Mondal, 

2019; Nguyen et al., 2021; Tran et al., 2021). Their 

occurrence is attributed to the Earth's geological 

environment and meteorological processes (Ma 

et al., 2021). Landslides are frequently caused by 

geologic, geographic, or climatic factors that are 

common in large areas. Landslide causes and 

triggers include slope-related factors that may 

increase shear stresses and reduce shear strength 

(Varnes, 1978). Therefore, knowing the 

mechanisms of landslides and landslide hazard 

mapping (LHM) is important and may be 

regarded as a standard tool to assist decision-

making activities (Bui et al., 2016). 

Landslide susceptibility, landslide hazard, 

and landslide risk are the three fundamental 

components of the landslide study (Shano et al., 

2020). Landslide susceptibility mapping (LSM) is 

the process of determining the spatial distribution 

and classifying terrain units based on their 

tendency to generate landslides. A landslide 

susceptibility map is the basis for establishing a 

landslide hazard map, which indicates the 

likelihood of landslide events throughout a 

particular period and in a specific area (Varnes et 

al., 1984). 

Recently, numerous GIS-based models and 

approaches have been used by scientists to 

evaluate landslide hazards and generate hazard 

maps depicting their spatial distribution (Akgun 

& Türk, 2010; Vahidnia et al., 2009). In general, 

these models can be classified into three groups: 

1) heuristic, 2) deterministic, and 3) statistical 

methods (Dou et al., 2019). In landslide studies, 

various decision-making support tools for GIS-

based heuristic analysis methods, including the 

Analytical hierarchy process (AHP), have been 

developed (Akgun & Türk, 2010). The AHP (Saaty, 

1977, 1990, 2008) is a decision-making method 

that was originally suggested and developed by 

Saaty. Its primary purpose is to provide solutions 

to decision-making and estimating issues in 

multivariate environments. There are many 

bivariate statistical approaches for mapping 

landslide susceptibility, of which the Frequency 

ratio (FR) method is one of the most frequently 

used (Shano et al., 2021). 

In landslide studies, the AHP and FR have 

been used by many authors all over the world, 

including those in Vietnam for LHM (Dang et al., 

2020; Le et al., 2021; Senouci et al., 2021; Shano et 

al., 2021). Additionally, the AHP has been 

combined with other methods to improve the 

effectiveness of LHA (Mokarram & Zarei, 2018; 

Zhang et al., 2016). In this study, the AHP and the 

combined AHP&FR models were employed for 

LHM in Batxat, Laocai. In comparison with the 

AHP, the FR considers the correlation between 

the locations of historical landslides and the 

related factors, so this approach can improve the 

performance of the landslide prediction. To 

evaluate the performance of the models, the 

landslide susceptibility maps and landslide 

hazard maps were compared with the landslide 

inventory map using the area under the curve 

(AUC) of the receiver operating characteristic 

(ROC), the seed cell area index (SCAI), and the 

precision of the predicted results (P) values. 

2. Materials and methods 

2.1. Study area 

Batxat is a district in the Northwest Vietnam 

mountainous region, which is known as one of the 

most landslide-prone regions in the country (Bui 

et al., 2017) (Figure 1a). Some landslide events 

were recorded in the study, such as a landslide in 

Phin Ngan commune (2004) that killed 23 people 

(Figure 1b), medium-sized landslides in Muong 

Hum commune (2013), Phin Ngan (2020). 

Landslides in the Northwest Vietnam region are 

caused by eight main factors that are (Nguyen & 

Dao, 2007): 1) Relief slope: Landslides often occur 

at slopes greater than 250 (most frequently 

between 300 and 450); 2) weathering process of 

rocks: Numerous landslides with a sliding surface 

at the interface between the original rocks and the 

incomplete weathering zone (Tran et al., 2019); 3) 

Modem present tectonic movement; 4) Hydro-

system: Landslides often occur in regions with 

heavy rainfall, and throughout the rainy season; 

5) Vegetation density: Landslides occur most 

often and strongly in areas with little plant cover; 
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6) Striking and dipping of original rocks: 

Numerous landslides occur in locations where the 

relief slope direction coincides with the dipping or 

foliation of original rocks; 7) Physical property 

and structure of original rocks: Landslides often 

occur in weakening and severely broken-up rock 

zones; 8) Human activity that may trigger a 

landslide directly or indirectly. The study area has 

numerous geological formations that may be 

divided into three groups: 1) Shales, sandstones, 

and siltstones (SSS); 2) Quartz-biotite schists, 

graphite schists, and amphibolites (QGA); 3) 

Granodiorite, granite, and granite-migmatite 

(GGM). The total annual rainfall in the study 

region ranges from 2,000 to 3,600 mm due to its 

location in the high rainfall zone of the Hoang Lien 

Son mountain range (Bui et al., 2017). 

2.2. Analytic Hierarchy Process (AHP) 

In the AHP method (Saaty, 1990, 2008; Saaty 

& Vargas, 2001), the landslide susceptibility map 

of the study area could be prepared by utilizing 

class weights and factor weights with a 

reasonable consistency ratio (CR).   

The Consistency Ratio (CR) is the ratio of the 

consistency index (CI) to the average consistency 

index (RI) for the same order matrix (Saaty, 

2002). The consistency index (CI) is calculated 

using the following formula (Saaty, 1990, 2002): 

 𝐶𝐼 = 𝜆𝑚𝑎𝑥 − 𝑛𝑛 − 1  (1) 

Where λmax - the largest eigenvalue and n – 

the order of the matrix. If the consistency ratio 

(CR) is less than 10%, the weight estimate (W) is 

considered appropriate (Saaty, 1990). As a final 

step, all of the weights of the classes and factors 

are integrated into a single landslide susceptibility 

index (LSI) (Cantarino et al., 2019): 

 𝐿𝑆𝐼 =∑𝑊𝑗. 𝑋𝑖𝑗𝑛
𝑗=1  (2) 

Where Wj - the weight of factor j, Xij - the 

weight of class i of factor j, and n - the number of 

factors. 

2.3. Frequency ratio method (FR) 

The FR method has been widely and 

effectively applied in various studies for LSM 

(Gholami et al., 2019; Shano et al., 2021). Based on 

the analysis of relationships between the 

distribution of landslides and each landslide-

related factor, the frequency ratio approach 

determines the correlation between the locations 

of landslides and these factors in the study area. 

As a result, the frequency ratio values for each

 

Figure 1. Location of study area (a) and photo of a landslide in Phin Ngan commune (b). 
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factor were calculated based on their association 

with landslides (Yalcin et al., 2011). The frequency 

ratio of each range/class of all landslide-related 

factors is summed together to get the LSI (Mandal 

& Mondal, 2019; Shano et al., 2020): 

 𝐿𝑆𝐼 =∑𝐹𝑟 (3) 

Where LSI – landslide susceptibility index; Fr – frequency ratio/rating for each class/range of 

landslide-related factor. 

2.4. Landslide inventory map 

Actual landslide mapping in the study area is 

critical for defining the connection between the 

landslide distribution and the influencing 

variables (Pourghasemi et al., 2013). The 

landslide inventory maps have been used to 

assign or compute rating values for landslide-

related factors and validate analysis results. In the 

study area, a total of 156 landslide sites were 

identified and mapped, with the largest landslide 

covering an area of about 20896.06 m2 and the 

smallest covering an area of approximately 

917.65 m2. The training and testing data sets were 

prepared using 70% and 30% of the landslide 

locations, respectively. 

2.5. Landslide-related factors 

The landslide-related factors are considered 

to depend on the features of landslides, data 

available, and the connection with historical 

landslides. In this study, rainfall is the main 

landslide triggering factor, and most landslides 

occurred along the roads. In addition, the set of 

factors has been selected in previous studies for 

LSM (Bui et al., 2017; Le et al., 2021). Therefore, 

ten landslide-related factors were selected for 

LSM and LHM: Elevation, slope, distance to road, 

distance to drainage, land use and land cover 

(LULC), rainfall, lithology, aspect, distance to 

faults, and relative relief (Figure 3). Two 

estimators, "Accountability" (A) and "Reliability" 

(R), were used in this study to determine the 

importance of the factors causing landslide 

occurrences (Greenbaum et al., 1995a; 

Greenbaum et al., 1995b). The class weights of 

these factors were determined using the AHP and 

FR methods. The factor weights were determined 

using the AHP method (Table 1).  

 

 

Figure 2. Flow chat of LHA. 

2.6. Validation of the landslide susceptibility 

map  

The validation was produced by comparing 

the landslide susceptibility and landslide hazard 

maps to the landslide inventory map. In this study, 

the AUC, SCAI, and P values were used for 

evaluating the performance of the models. The 

AUC value ranges between 0.5 and 1.0 (Cantarino 

et al., 2019) and is divided into six categories (Šimundić, 2009). The SCAI value, which indicates 

the density of landslides within each class, is 

calculated as the ratio of the area (%) of each 

landslide hazard class to the area (%) of 

landslides within each class (Süzen & Doyuran, 

2004). The P value is calculated by the ratio of the 

area covered by landslides in the upper-moderate 

landslide hazard class (KS) to the total area 

covered by landslides (S) in the study area 

(Mokhtari & Abedian, 2019). 

3. Results 

Figure 2 represents the process of landslide 

hazard assessment performed in this study. 

According to the data analysis, LULC and Distance 

to road play the most significant role in landslide 

occurrences. The LSI was calculated using 

formula (2) and two landslide susceptibility maps 

were established in GIS (Figure 4). The calculated 

LSI value, which ranged between 0.12 and 0.48 

(AHP model), and 0.07 and 0.45 (combined 

AHP&FR model), was categorized into five 

landslide hazard classes: very low, low, moderate, 

high, and very high (Figure 5). 
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Table 1. Weights of classes and factors using AHP and FR. 

Factor Class % Area Landslide A R 
Class weight Factor 

weight 
(Wj) 

AHP FR 
Xij CR FR 

Elevation 
(m) 

< 500 23.32 54 

76.85 8.51 

0.429 

0.027 

2.124 

0.112 
500÷1000 24.15 31 0.278 1.178 

1000÷1500 21.70 19 0.184 0.803 
1500÷2000 18.50 5 0.065 0.248 

> 2000 12.34 0 0.044 0 

Slope 
(Degree) 

< 15 13.25 17 

44.24 6.14 

0.124 

0.04 

1.177 

0.103 
15÷25 24.62 36 0.343 1.342 
25÷35 33.87 32 0.335 0.867 
35÷45 21.6 22 0.158 0.934 

> 45 6.66 2 0.04 0.276 

Distance to 
road 
(m) 

< 500 48.60 91 

80.38 8.69 

0.55 

0.039 

1.718 

0.209 
500÷1000 20.13 15 0.24 0.684 

1000÷1500 10.21 2 0.082 0.179 
1500÷2000 5.83 0 0.051 0 

> 2000 15.23 1 0.077 0.06 

Distance to 
drainage 

(m) 

< 250 28.55 49 

74.04 7.18 

0.531 

0.031 

1.574 

0.102 
250÷500 25.62 29 0.118 1.039 
500÷750 21.91 22 0.192 0.921 

750÷1000 16.52 7 0.118 0.389 
> 1000 7.41 2 0.04 0.247 

LULC 

Water 0.42 0 

44.37 16.84 

0.044 

0.018 

0 

0.181 

Forest 79.64 62 0.487 0.714 
Agriculture 6.1 5 0.071 0.752 

Shrub 11.18 28 0.232 2.298 
Build area 1.56 12 0.122 7.058 
Bare land 1.09 2 0.045 1.679 

Average 
monthly 
rainfall 

(mm/mth) 

< 250 33.76 27 

56.70 7.20 

0.348 

0.021 

0.734 

0.062 
250÷280 26.94 29 0.492 0.988 
280÷310 24.89 25 0.072 0.922 
310÷350 9.85 19 0.044 1.77 

> 350 4.56 9 0.044 1.811 

Lithology 
SSS 14.52 25 

67.7 5.81 
0.143 

0 
1.58 

0.107 GGM 46.67 51 0.571 1.003 
QGA 38.81 33 0.286 0.78 

Aspect 

Flat 0.18 0 

72.97 6.78 

0.02 

0.021 

0 

0.027 

North 8.13 11 0.088 1.241 
Northeast 17.56 13 0.111 0.679 

East 16.48 17 0.196 0.947 
Southeast 11.25 10 0.077 0.815 

South 9.52 15 0.144 1.445 
Southwest 8.88 15 0.144 1.55 

West 9.26 7 0.053 0.693 
Northwest 11.51 12 0.1 0.957 

North 7.25 9 0.067 1.139 

Distance to 
faults 
(m) 

< 900 48.71 54 

98.59 5.87 

0.437 

0.026 

1.017 

0.048 
900÷2200 27.6 33 0.286 1.097 

2200÷4200 11.86 18 0.171 1.392 
4200÷6500 7.04 2 0.06 0.26 

> 6500 4.79 2 0.045 0.382 

Relative 
relief 

(m/km2) 

< 250 12.23 10 

73.12 6.74 

0.088 

0.037 

0.75 

0.05 
250÷400 29.02 44 0.442 1.391 
400÷520 27.97 37 0.297 1.213 
520÷650 23.3 16 0.126 0.63 

> 650 7.48 2 0.048 0.245 
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Figure 3. Landslide-related factors maps: (a) elevation, (b) slope, (c) distance to road, (d) distance to 

drainage, (e) LULC, (f) rainfall, (g) lithology, (h) aspect, (i) distance to faults, and (j) Relative relief.
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Figure 3 (Continued). 

 

Figure 4. Landslide susceptibility maps using AHP (a) and combined AHP&FR (b) methods. 
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Figure 5. Landslide hazard maps using AHP (a) and combined AHP&FR (b) methods. 

 

 

Figure 6. Performance of the landslide susceptibility assessment using AHP and combined AHP&FR 

methods (a – Success rate and b – Prediction rate). 
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Table 2. Accuracy and Precision of the predicted results using SCAI and P. 

Method Class % Area 
% Landslide 

area 
SCAI KS (km2) S (km2) P (%) 

AHP 

Very low 17.59 5.16 3.41 2.85 

55.2 57.35 
Low 23.22 13.19 1.76 7.28 

Moderate 21.59 24.29 0.89 13.41 
High 24.41 32.61 0.75 18.00 

Very high 13.19 24.75 0.53 13.66 

Combined 
AHP&FR 

Very low 26.61 2.43 10.95 1.34 

55.2 75.09 
Low 18.64 7.07 2.64 3.9 

Moderate 14.19 15.42 0.92 8.51 
High 24.2 28.46 0.85 15.71 

Very high 16.36 46.63 0.35 25.74 

According to AHP analysis, very low, low, 

moderate, high, and very high hazards account for 

17.59%, 23.22%, 21.59%, 24.41%, and 13.19%, 

respectively, of the study area. Similarly, based on 

the results of the combined AHP&FR analysis, the 

assessment determined that 26.61%, 18.64%, 

14.19%, 24.20%, and 16.36% of the study area, 

respectively, are in very low, low, moderate, high, 

and very high landslide hazard areas (Table 2). 

According to the AHP and combined AHP&FR 

models, 38 and 76 of the total landslide locations, 

correspondingly, are in the very high landslide 

susceptible area. The performance of the methods 

was evaluated using AUC, SCAI, and P values. The 

AUC values for the success rate of the AHP and 

combined AHP&FR models are 0.72 and 0.75, and 

for the prediction rate are 0.67 and 0.70, 

respectively. The precisions of the predicted 

outcomes by the AHP and combined AHP&FR 

models are 57.35% and 75.09%, respectively. The 

results are shown in Figure 6 and Table 2. 

4. Discussion  

This study demonstrated the effectiveness of 

the AHP method in landslide hazard assessment. 

The analysis results of the two models are 

acceptable, and both models are appropriate for 

assessing landslide susceptibility in the study 

area. By combining the AHP and FR methods, the 

performance of the analysis model was improved. 

This is demonstrated by the results of the 

accuracy evaluation using the AUC and SCAI 

values. Using the SCAI value, the accuracy of the 

models is higher when the SCAI value is higher in 

the very low hazard class and very low in the very 

high hazard class. As shown in Table 2, the 

combined AHP&FR model performs better in the 

very low and very high hazard zones. The AHP 

performance is better only in moderate and high-

hazard zones. The very low and very high hazard 

zones are especially significant since they are 

directly linked to land use and long-term 

planning. According to the combined AHP&FR 

model, the very low hazard zone accounts for 

26.61% of the study area, compared to 17.59% in 

the AHP model. In addition to improving the 

flexibility of land use planning in the study area, 

this shows the predictive performance of the 

models. This may be explained by the fact that the 

AHP model calculates the rating values of the 

classes and factors mostly based on expert 

opinion, which may lead to an underestimate of 

the influence of factors affecting the occurrence of 

landslides. Because of this disadvantage, the AHP 

has combined with other models to improve the 

performance of landslide prediction (Akgun & 

Türk, 2010; Mokarram & Zarei, 2018). 

Additionally, the combined AHP&FR model 

calculated rating values for the factor classes 

using the training data, thus improving the 

correlation between the factors and the landslide 

locations in the study area. The results show that 

Distance to road and LULC have the strongest 

influence on the landslide process in the study 

area. However, expert opinions play a significant 

role in the AHP model when evaluating landslide 

susceptibility in large areas or when there is 

insufficient data on landslide locations to use 

statistical techniques. Therefore, the AHP model is 

still frequently utilized in numerous landslide 

studies worldwide. 
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5. Conclusion 

Utilizing the AHP and combined AHP&FR 

methods, landslide susceptibility maps, and 

landslide hazard maps were prepared for the 

study area. They enable the identification of the 

highest landslide hazard areas and the prediction 

of future landslide sites. The AUC, SCAI, and P 

values were used to evaluate the performance of 

the models, which showed that both models could 

be used to assess landslide hazards in the study 

area. The findings indicated that the combined 

AHP&FR model is more accurate at predicting 

than the AHP model.  

The AHP and combined AHP&FR models 

revealed that areas with high and very high 

hazards to landslides covered 37.5% and 40.56% 

of the study area, respectively. This indicates that 

the studied area is highly susceptible to 

landslides, which should be properly considered 

during disaster management, risk assessment, 

and land use planning. Finally, the methods 

presented in this research can be applied to 

landslide hazard assessments in other areas of 

Vietnam with similar landslide triggering factors. 
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